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The linear and weakly nonlinear stability of Poiseuilldouette flow is considered for 
various values of the relative wall velocity 2u,. An account is given first of the 
asymptotic upper and lower branches of the linear neutral curve(s), followed by their 
disappearance, as u, is increased. Two main (and one minor) neutral curves are found 
to exist for smaller O(1) (or lesser) values of u,, then one for moderate O(1) values 
of u,, and none for larger 0 ( 1 )  values of u,. The cut-off velocity at which each main 
neutral curve disappears is determined, and in each case the whole neutral curve 
for u, just below the cut-off value is determined in closed form. Secondly, weakly 
nonlinear solutions are found to bifurcate subcritically from the neutral curve for u, 
just below cut-off, but to ‘bifurcate from infinity ’ just above cut-off. This identifies 
a minimum threshold amplitude at the entry to the regime where no linear neutral 
curve exists. 

1. Introduction 
Although plane Poiseuille channel flow and plane Couette flow are observable 

experimentally at lower Reynolds numbers, both flows become unstable at higher 
Reynolds numbers, for different reasons. Many aspects of plane Poiseuille flow (PPF) 
instability are known and have been reviewed by Herbert (1981a), Stuart (1981) and 
in Orszag & Kell’s (1980) introduction, for example. In  summary, for Reynolds 
numbers R < R, ( x 5772) PPF is linearly stable, while for R > R, certain infinitesimal 
disturbances grow (Heisenberg 1924; Orszag 1971). Weakly nonlinear analysis then 
shows that at R = R, there is a subcritical bifurcation of a two-dimensional 
progressive-wave fmite-amplitude solution (Stuart 1960; Reynolds & Potter 1967 ; 
Stewartson & Stuart 1971). Such solutions a t  non-small amplitudes have been found 
to varying degrees of approximation by Meksyn & Stuart (1951), Zahn et al. (1974), 
Herbert (1976) and others. In  the parameter space formed by Reynolds number, 
wavenumber and amplitude, these two-dimensional waves map out a ‘neutral’ 
surface (Herbert 1977), a typical cross-section of which is illustrated in figure 1 for 
a fixed R < Re. The ‘lower’ branch (LB) of this surface is unstable to two-dimen- 
sional disturbances, while the upper branch (UB) is stable. For R < R, x 2935, 
no finite-amplitude two-dimensional periodic ‘states exist, and all two-dimensional 
disturbances are believed to decay (Orszag & Kells 1980). 

The LB neutral solution gives a threshold amplitude for R 2 R G ,  below which 
two-dimensional disturbances decay, and above which disturbances force the flow to 
snap through to the appropriate UB solution. On the other hand, these UB solutions 
themselves are unstable to three-dimensional disturbances according to computations 
by Orszag & Kells (1980) (see also Orszag & Patera 1980; Herbert 1981b). Further, 
these three-dimensional instabilities exist for R < R G ,  in fact down to Reynolds 
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FIGURE 1. A subcritical section of the neutral surface for PPF, and typical of Reynolds numbers R 
where R,  < R < R,. The stability of the solutions to two-dimensional disturbances is indicated by 
the arrows. 

Wavenumber 

numbers as low as about 1OOO. This seems in good agreement with experiment. 
Recently, Herbert (1983a, b) has examined the stability of the LB nonlinear solutions 
to three-dimensional disturbances, finding another critical Reynolds number (below 
R,) beneath which certain ones grow more rapidly than the two-dimensional ones. 
Mr A. Bernoff (private communication) has noted that at this critical Reynolds 
number a bifurcating solution is likely, and the lowest R at which this or a similar 
three-dimensional solution exists could be related to the lowest Reynolds number at  
which PPF is unstable to large-amplitude disturbances. 

In contrast, the understanding of plane Couette flow (CF) stability is far from 
complete, owing mainly to the lack of a linear neutral curve. Romanov (1973) has 
indicated a proof that CF  is linearly stable a t  all R, but attempts to find 
two-dimensional nonlinear forms, to tie in with the experimental instability, have 
had mixed success. Thus the forms of Ellingsen, Gjevik & Palm (1970), Coffee (1977), 
Itoh (1977) and Davey (1978~)  came from expanding about the slowest decaying 
linear mode. Davey (1978~)  among others notes the difficulties of this non-asymptotic 
procedure, and Rosenblat & Davis’ (1979) model problem brings that further into 
question. Also, Orszag & Kells ’ computations suggest that such nonlinear solutions 
might be spurious. Therefore it seems possible that C F  is stable to all nonlinear 
two-dimensional disturbances. Three-dimensional effects, however, render CF non- 
linearly unstable, according to Orszag & Kells, at Reynolds numbers of order 1OOO. 

Similar difficulties with the nonlinear stability question exist in Hagen-Poiseuille 
flow through a circular pipe and other flows linearly stable a t  all R, although Smith 
& Bodonyi (1982) have recently identified part of the nonlinear neutral surface for 
Hagen-Poiseuille flow, at  large R. It is likely that these nonlinear finite-amplitude 
states give unstable threshold amplitudes for a fixed wavelength. The Smith & 
Bodonyi analysis could not identify those nonlinear solutions with the smallest 
pressure amplitude, but did indicate that their wavelength is O(R) ,  with axial velocity 
profiles that are distinctly non-parabolic. 

The current aim is to treat flows that are linearly stable a t  all R by an asymptotic 
method perhaps complementary to Smith & Bodonyi’s. Asymptotic or multistructured 
analysis is very helpful, we should perhaps recall, because it provides useful physical 
insight, structural and theoretical understanding, numerical guidelines, a different 
firm perspective and, not least, an easier access to the all-important nonlinear regime. 
Moreover, it  points to alternative more efficient numerical methods (e.g. Smith, 
Papageorgiou & Elliott 1984) and its predictions tend to ‘work’ even at low 
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subcritical values of R : see the last-named paper and references therein. Below, rather 
than studying CF we examine the linear combination of CF with PPF, produced in 
a channel by an applied pressure gradient and walls moving a t  different velocities, 
say (without loss of generality) with the same speed but in opposite directions. The 
linear stability of this plane ‘Poiseuille-Couette’ flow (PPCF) has been studied 
previously by Potter (1966), Hains (1967) and Reynolds & Potter (1967). Heuristically, 
as in Heisenberg (1924) and Lin (1945), Potter (1966) demonstrated that above a 
certain ‘ cut-off ’ value of the non-dimensional wall velocity u, no neutral curve could 
be found. Numerical solutions of the Orr-Sommerfeld equation by Hains and 
Reynolds t Potter confirmed this result : more comments are given later. 

First below, in $2, the large-Reynolds-number forms of the linear neutral curve 
are derived for u, less than cut-off. Unlike in PPF, for u, = 0(1 )  the neutral and 
unstable wavelengths in PPCF are very long, O(R). The Appendix shows, for those 
interested, the transition to PPF behaviour as u, decreases towards zero and, further, 
that there are sometimes two or three neutral curves. The work in $2 determines the 
two cut-off values of u, at which the two main neutral curves disappear, the precise 
nature of that disappearance being given subsequently in $3. Also in $3, weakly 
nonlinear effects are considered for u, close to a cut-off value. For infinitesimal 
disturbances, with u, just below cut-off, an analytic expression for the whole 
(disappearing) linear neutral curve is obtained. For u, above cut-off the neutral states 
have finite amplitudes, and because these states prove to be unstable this identifies 
a minimum threshold amplitude for nonlinear two-dimensional disturbances. Finally, 
further comments are made in 34. 

2. Wall velocities less than cut-off 
The Cartesian coordinates, time, pressure and velocities are denoted by bx, bUil t, 

pVmp and U,U respectively (figure 2), where b is the channel half-width, p is the 
incompressible fluid’s density and Urn is the mean velocity. Hence the non-dimensional 
Navier-Stokes and continuity equations read 

u,+(u.V)U =-Vp+R-’V%, V . U  = O ,  (2.la,  b) 

where R = Urn blv, v is the kinematic viscosity ; and the boundary conditions 

u=-u,, v = O  ony=--1, ( 2 . 2 ~ )  

u=u,,  v = O  o n y = l  (2.2b) 

hold, with 2u, being the relative wall velocity. The unperturbed-flow solution is 

u = u,(y) = +( 1 -$) + u, y, v = 0, p = p,(z) = - 3zB-1. (2.3) 

Note that for PPF the critical Reynolds number R, here is 3848 instead of the 
better-known value of 5772. 

One neutral curve for infinitesimal disturbances to (2.3) is given by Potter (1966), 
Hains (1967) and Reynolds & Potter (1967) for various u,. For u, = 0 (PPF) it is 
known that, if the disturbance wavenumber is a, then aH and aRtf tend to constants 
on the lower and upper branches respectively for large R. In the Appendix we study 
how these properties change as u, increases through the distinguished scales R-f,  R-A, 
R* and R-8, deducing that when u, reaches O( 1) both the upper and lower branches 
have aR - constant (and at least two neutral curves exist then). Similar changes occur 
in pipe flows as the aspect ratio is decreased (Smith 1979), while the lower branch 
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FIGURE 2. Diagram illustrating coordinate axes and non-dimensionalization. 

for the odd neutral mode of the Bickley jet also produces such long O(R)  lengthscales, 
as does rotating pipe flow (e.g. Mackrodt 1976). 

The present reason for examining the asymptotic behaviour is that at a 'cut-off' 
wall velocity, u, = u:, say, the two branches are expected to coalesce, so that u; 
is determined just by the asymptotic problem. As usual, disturbances harmonic in 
x, t ,  and of amplitude S and phase speed c, are sought: 

[.ii,V",Pl (Y) .  (2.4) 

W , c , . i i , q  = [A;l,co,$~(y), - - ~ ~ $ , ~ y ~ l + ~ ~ ~ ~  (2.5) 

ia(z-ct) [U--uo,2.',P-P,l = Se 

At  large R the form 

is expected, where $, is the non-harmonic component of the stream function. From 
(2.4), (2.5) and (2.1), and provided S is smaller than any negative power of R, the 
leading-order equation is 

iA, $iv + (u, - c,) 9," - u," $, = 0, ( 2 . 6 ~ )  

a long-wave version of the Orr-Sommerfeld equation. The boundary conditions here 
are 

$ , = $ ; = O  on y = - l , l .  (2.6b) 

Equations (2.6a, b) then pose an eigenvalue problem for c, in terms of A, and u,. The 
values of A, for which c, is real define the asymptotes of the neutral curves. 

Equations (2.6) were solved numerically by an adaptation of Smith's (1974) 
finite-difference method. A variable step length Ay in y was used to cluster the 
gridpoints close to the walls, where Ay was varied from while at the 
centre it was typically 5 x Up to 3001 gridpoints were spread across the channel. 
The method was confirmed to have O(h2) accuracy, and Richardson extrapolation was 
used to improve this to O(h4) for certain of the results. 

In figures 3 (a, b) the limiting wavespeed c, and scaled wavelength A, are plotted 
for the neutral curve found by Hains (1967) and Potter & Reynolds (1967). The upper 
and lower branches are marked according to their normal linear definitions, along 
with the lower-branch asymptote, from the Appendix. Despite first appearances, 
c,+O from above as u,+O on the upper branch. This is illustrated more clearly in 
the enlargement in figure 4 (a) of an area within the dotted circle of figure 3 (a). The 

to 5 x 



The stability of Poiseuille-Couette Jlow 87 

0.1 I I I I I 

(4 
0.075 - - 

Unstable J 

Stable \ 

-0.1 I I I I 1 I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 

4 

0 0.1 0.2 0.3 0.4 0.5 0.6 

FIGURE 3. Plot of (a) wavespeed and (a) scaled wavelength versus wall velocity 
for mode MI ; - - - -, asymptotes valid as u,+O (see Appendix). 

U W  

upper branch of figure 3 (a) is labelled M1 in figure 4 (a) .  It asymptotes to O +  along 
the dotted line as u,-+O: see Appendix. Also illustrated in figure 4(a), is a second 
neutral curve, which emerges for small values of u,. This, with its unstable modes 
(M2), does not seem to have been identified before, probably because it exists only 
at quite large R. Moreover, the growth rates inside the second neutral curve are 
smaller than the original ones, so that these new modes seem of less physical 
importance. Figure 4 (b) is a plot of the scaled wavelength against u, for this second 
mode M2. 
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FIQURE 4. Enlarged plot of (a) wavespeed and ( b )  scaled wavelength versus wall velocity for mode 
M2 and the upper branch of M i  (wavespeed only); ----, * * * * ,  -.-. , asymptotes valid as u, + 0 
(see Appendix). 

Figures 3 and 4 show that for each neutral mode there exists a cut-off wall velocity 
u t  below which the neutral curve exists and .above which i t  does not. A method 
explained in $3 gives the cut-off values: 

ut = 0.5279 (with A, = A* = 2.096 x ( 2 . 7 ~ )  

uz = 0.01020 (with A, = A* = 3.755 x co = c* = 2.2 x (M2). (2.7b) 

A comparison with Reynolds & Potter's (1967) calculations is made in $3.  
The above leads on to the investigation in $3 below of the complete disappearance 

of the neutral curve, and of weakly nonlinear effects, near the cut-off values u, = ug . 

c, = c* = -0.0513) (Mi ) ,  
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3. Linear and weakly nonlinear properties near cut-off 
The key here is to scale the flow parameters so as to locate both the linear and 

weakly nonlinear neutral curves by use of a disturbance amplitude as. We assume 
that S 6 1, and then relate the other parameters to it. Weak nonlinearity results when 
a is 0(1), while the linear neutral curve is recovered for a+O. 

Reynolds & Potter's calculations point to a subcritical Hopf bifurcation from the 
linear neutral curve, as in PPF, when R is close to R,. Near the bifurcation point, 

Y = s," u O d y + S ~ + S z ~ + S s Y 2 +  ... , (3 .1~)  

c = co+Sc,+S2c2+ ..., (3.1 b) 

with c, real: see e.g. Chen & Joseph (1973). The novelty here, however, is that aR 
is 0 ( 1 ) ,  from $2, and so 

A = (aR)-'= Ao+SA,+SzA2+ .... (3.1~) 

It now remains to fix the orders of u,-u& the slow-time variation, and a. 
First, figures 3 and 4 indicate that a linear variation in c and A leads to a quadratic 

variation in u, when u,+uz (note that Chen & Joseph have c, = A, = 0, and hence 
different scalings from those proposed here). Therefore we write 

u, = u;+s2w. (3.ld) 

Next, as u,+uz the upper and lower branches join (figures 3a, 4a) and the form 
Im (c) - constant (A, - A )  (A-  A,) is anticipated, where A, and A, specify the upper 
and lower branches for a given u,. Hence Im (c) = 0(S2) in effect for (3.1 d), suggesting 
the scaled times 

r = act, T = aS2t. (3.1 e) 

The fast time r accounts for the basic harmonic variation, while the slow time T 
governs the disturbance growth. In (3.1 e), I c I replaces c if c < 0, but this only 
marginally alters details of the ensuing analysis. 

The appropriate wavelength is fixed by streamwise diffusion, an O(a2) relative effect 
ignored in $2, which implies the scaling 

X = ax, a = &a,. (3.1 f) 
Here, incidentally, the unusual inclusion of streamwise diffusion effects, which fix a 
critical Reynolds number for u, near u: (see below), would require a slight 
modification to the 'pragmatic ' approach of Smith et al. (1984). 

Substitution of (3.1) into (2.1) and (2.2) then leads to the sequence of equations 

LYo = 0, ( 3 . 2 ~ )  

(3.2b) 

(3 .2~)  

(3.2d) q=(Y, ) ,=O o n y = f l ,  
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L = Qoa,,x +Coa,,,-f2O,,ax -Aoa,,,, , (3.3a) 

J(Y ,@)  Y,@x-Yx@u,  (3.3b) 

90 

where 

Qo(y) = uo(y) for u, = u:, C0(y) = y. (3.3c) 

Solutions are sought now with period 2x in X and 7 :  

Yo = (a(T)z,+ti(T)$), ( 3 . 4 ~ )  

where z,(B,y) = eie$,(y), e = X - 7 ,  (3.4b) 

$,(y) is as in (2.5) and a bar denotes the complex conjugate. From (3.4) and (3.2a), 
9, satisfies 

ih, $iv + (Q, - c,) $;- Qoyu $o = 0, (3.5a) 

$ o = $ ; = O  o n y = + l .  (3.5b) 

A solution for Y, can be found only if (3.2 b) satisfies a solvability condition. We 
It follows that A, = A* and co = c* as in (2.7a,b). 

therefore introduce- the inner product 

(3.6a) 

where < B , y > = S '  P-dY, (3.63) 

and denote by L+ and z: ( = eis 4:) respectively the operator and eigenfunction 
adjoint to L and zo relative to (3.6). Then the Fredholm alternative for (3.2b) yields 
the solvability condition 

-1 

[Cl 'Y,,,+4 'Y,,,,-J('Y,, ~o,,),~:l = 0, (3.7) 

or, in view of (3.4) and (3.6), 
'1 =p2'17 (3.8a) 

where P l P ,  = i<$i",$o'>? P l =  <$3>$o+>. (3.8b) 

If u: is a cut-off wall velocity (3.1 b-d) imply that c1 and A, must be non-zero, and 
so from ( 3 . 8 ~ )  p ,  must be real. The calculation method for U: and c* used this 
property and the repeated secant method. Because no eigensolutions exist above 
cut-off, convergence was ensured by regarding u, as a function of c,, rather than vice 
versa. 

From ( 3 . 8 ~ )  and (3.4) the solution to (3.2b) takes the form 

Yl = Al(a eie$ll(y)+c.c.) +((~$l , (y)+a2e2ie$13(y) )+c .c . ) ,  (3.9) 

where C.C. denotes the complex conjugate. In solving numerically for $,, $0' and $11, 
we chose $$(l)  = 1 ,  ($;, 4;') = - p ,  = 1, and &(- 1 )  = 0. Other normalizations 
are equally acceptable, their only effect being to change the definition of amplitude 
(e.g. Herbert 1980). 

Similarly, (3.2 c) must also satisfy a solvability condition, namely 

aT = i a (A~(p2p4-p , )  + c2-h2p2 + + 2ih,) - Wp3--p7) ,  ( 3 . 1 0 ~ )  

where PIP3 = <'O$g, $o'>t PIP4 = < $ y l Y  $o'>, (3. lob) 

PIP5 = '<$;:, $o'>, PIP6 = < ( Q O - c O ) $ O ,  $o'), (3.10c) 

PIP7 = <$0($;2+ $:2)-$;($;2 +$;2)-$0 $ 1 3 - 3 ;  $;3 + '$g $139 $,">' (3'10d) 
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U W  

0.48 
0.51 
0.51375 
0.5 15 625 
0.5175 
0.5 19 375 
0.521 25 

a c  R, 
4363 
4 570 
4587 
4610 
4607 
4597 
4673 

TABLE 1 

U W  a c  Rc 
0.523 125 4 752 
0.525 1 4710 
0.526875 4507 
0.527 344 4 757 
0.5275 4 775 
0.527844 4772 
u: asymptote 4771 

With d = I a 1 2 ,  ( 3 . 1 0 ~ )  simplifies to the form 

d ,  = - p 1 d + p 2 6 2 ,  ( 3 . 1 1 ~ )  

where P1= P3A?+P4a:+P5 w, (3.11b) 

P2 = 2p: , P3 = 2(Pz P: -Pi),  P4 = 2(P: +2Ao), (3.11 c) 

p 6 = -2p'9, and p! = Im (pj). (3.11 d) 

2) were calculated for the two cut-off wall velocities identified above, The pj ( j  
giving for the first mode (Ml)  

p2 = 4288, p3 = 5.924 x lo5, pa = 0.1272, p6 = 0.1370, ( 3 . 1 2 ~ )  

while for the second ( M 2 )  

,u2 = 1.501 x lo1', p3 = 2.501 x lo1', p4 = 1 . 5 4 6 ~  lo-', pus = 7.82 x 
(3.12 b) 

Hence all the numerical constants are positive, although they do have significantly 
different magnitudes. 

Linear stability 
It follows from (3.11) that, first, the flow is linearly stable if p1 > 0 and, secondly, 
the linear neutral curve is described by 

p3 A: +p4 a: +p5 W = 0. (3.13) 

The artificial parameter 6 can be eliminated here to yield the asymptote 

(3.14) 

Equation (3.14) is then the approximation for the whole neutral curve, valid for 
0 < uz-u, 4 1, R % 1. Its discriminant cannot be imaginary; consequently the 
critical Reynolds number, above which the flow is linearly unstable, is given by 

R, - (",Ao)-', a: - p;1~5(uz-uw). (3.15a, b )  

This implies that the neutral curve disappears for u, > u:, consistent with the 
definition of u;. In table 1 and figure 5 ,  Reynolds & Potter's data for a, R, and a: 
respectively are re-presented, together with the predictions for M i  from (2.7), ( 3 . 1 2 ~ )  
and (3.15). Extrapolation of their data (figure 5 )  produces uz = 0.528, in very good 
agreement with ( 2 . 7 ~ ) .  Similar estimates for A* and c* from their data are 2.10 x 
and -0.051 in turn, which again compare favourably with our M1 results in ( 2 . 7 ~ ) .  

4 F L X  158 
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FIQURE 5. Plot of at versus u, for Reynolds and Potters' data (*); -, asymptote (3.15 a). 

Weakly nonlinear solutions 
Sincep, > 0 the finite-amplitude (a? > 0) solutions to (3.11), a? = pip;', exist only 
if pl  > 0, i.e. if p5 W > - (,u3 A: +p4 a,"). We consider W < 0 and W > 0 in turn, i.e. 
u, 5 u;. 

(i) u, < uz 

Here at all points on the linear neutral curve there is a subcritical bifurcation from 
the undisturbed-flow solution d = 0. Further, (3.11) shows the finite-amplitude 
solution to be unstable, representing a threshold amplitude below which disturbances 
with a specified wavelength decay and above which they grow without bound, on this 
scale. If we write A2 = S 2 6  to eliminate S, the nonlinear solutions are, to  leading order, 

(3.16) 

A schematic plot a t  fixed R < R, (figure 6) illustrates that, while the amplitude A 
is small for small variations in wavenumber a from (A ,  R)-l, for other a the neutral 
states will have order-one amplitudes, with the flow then being distinctly different 
from PPCF. It is not known yet, however, whether the curve of A against a is closed, 
as in figure 1, for numerical nonlinear solutions are required when A = 0 ( 1 ) ,  e.g. as 
in Herbert (1976). Similarly (3.1 b) suggests that  the disturbance amplitudes will be 
order one when R is no longer large, a result of potential significance when the 
two-dimensional nonlinear critical Reynolds numbers R, (cf. f 1) are sought €or both 
the neutral curves M1, M2. 

(ii) u, > u$ 

Here PPCF is linearly stable, but nonlinear solutions still exist, from (3.16), and 
again represent threshold amplitudes. Rather than bifurcations from a finite R, these 
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FIGURE 6. Plot of amplitude against wavelength for R < R, = (,u4/A:p6(u~-uW))~. 
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solutions can be thought of as ‘bifurcations from infinity ’. Rosenblat & Davis (1979) 
conjectured on such bifurcations for CF, while Smith & Bodonyi (1982) found 
nonlinear solutions that bifurcate from infinity in Hagen-Poiseuille pipe flow. Note 
that (3.16) implies that when uw-ug approaches 0 ( 1 )  the flow is no longer a small 
perturbation of PPCF, supporting the argument (e.g. Rosenblat & Davis 1979) 
against the approaches of Davey & Nguyen (1971), Ellingsen et al. (1970), Coffee 
(1977) and Itoh (1977) referred to in 5 1. It is noted also that our minimum amplitude 
based on the u-perturbation does not fall to zero as R+ co (cf. Rosenblat & Davis’ 
model problems), whereas the minimum v-perturbation amplitude does. 

Finally, we remark in passing that, when the p5 are not all positive, (3.11a,b) 
describe a wider variety of linear neutral curves and their bifurcations. For example, 
if pa < 0 and p5 > 0 (j ?= 2), then (3 . l la ,b)  again describe a neutral curve that 
disappears to infinity, but with supercritical bifurcations. In this case 1u) solutions 

4-2 



94 S. J .  Cowley and F. T. Smith 

exist for W > 0. As another example, suppose that p3 > 0, ,u4 < 0. Then (3.11a,b) 
describe a neutral curve that, instead of ‘disappearing’ to infinity (figure 7a), 
‘retreats’ from infinity (figure 7b) .  Hence for ,u5 W > 0 neutral solutions only exist 
for a, > (-pus W/p4)4. 

4. Comments 
The first point is that a number of linear neutral curves exist in PPCF. In PPF 

(u, = 0) there is only one, but as u, increases two extra neutral curves soon emerge: 
see Appendix. For u, slightly larger, but still small, one of these new neutral curves 
then disappears, whereas the two remaining ones disappear only when u, is O( 1) : see 
$2. We have concentrated on these two main neutral curves. They disappear at u, 
values which a study for large R accurately identifies, along with an account of the 
whole neutral curve then. The inclusion of weak nonlinearity shows the existence of 
unstable finite-amplitude solutions. These bifurcate subcritically from PPCF for u, 
just below the cut-off value u:, whereas for u, just above u; they ‘bifurcate from 
infinity’. The nonlinear solutions close to the largest u: value are. probably of most 
physical importance with regard to experimental testing. In particular for 
u, 2 max (u:) all disturbances of amplitude A, whatever their wavelength, are likely 
to decay if 

Smith & Bodonyi (1982) also found nonlinear solutions that bifurcate from infinity, 
in Hagen-Poiseuille pipeflow. For disturbance wavelengths comparable to the pipe 
radius the pressure perturbation does not have a minimum amplitude, but their 
analysis suggested that the minimum occurs for wavelengths O(R), with an azimuthal 
wavenumber n = 1. The present analysis can but support this conjecture. Incidentally, 
however, the ‘minimum’ threshold amplitude does depend on which amplitude is 
taken. For example, for the streamwise velocity perturbation Smith & Bodonyi’s 
analysis demonstrates that the minimum threshold amplitude for Hagen-Poiseuille 
flow occurs for a shorter wavelength, comparable to the pipe radius. Another useful 
way of viewing the circular-pipe-flow case is to consider instead flow through an 
elliptical pipe, combining the present approach concerning ‘ cut-off’ with the Hocking 
(1977) and Davey (19783) calculations and Smith’s (1979) asymptotes, in an attempt 
to connect with Smith & Bodonyi’s findings above. In  particular, Davey’s calculations 
suggest a, R, + constant as the cut-off ellipticity is approached. 

For u, (or ellipticities) significantly above a cut-off value, the bifurcation solutions 
are no longer a small perturbation from the original flow, and a numerical (progressive 
wave) solution seems necessary, e.g. as in Herbert (1976). Since there are two 0(1) 
cut-off values in PPCF, there may be two such bifurcating solutions eventually, or 
three counting the third neutral curve in the Appendix. A continued investigation 
as the flow alters towards CF should prove interesting: for example, two of the 
bifurcating solutions might ‘ coalesce ’ and disappear (cf. figures 3 and 4). Alternatively 
UB (upper-branch) nonlinear solutions or structure could be sought (cf. Herbert 1976, 
figure 1 ) as a part of a study to test whether C F  is stable to all nonlinear two-dimensional 
disturbances. For example, if UB solutions do exist it is possible that, as u, increases, 
the closed loop(s), in the plot of wavenumber versus amplitude (figure l) ,  shrink to 
a point and disappear. 

S. J. C is very grateful to Professors S. Rosenblat and S. H. Davis for stimulating 
discussions, and we both thank the referees for their helpful comments. 
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Appendix 
Here the asymptotic form of linear neutral disturbances when u, 4 1 is outlined 

from analysis similar to Smith's (1979). Details of the lengthy calculations involved 
are available from the authors. There are four different magnitudes of u, that need 
to be examined. 

First Regime, u, = O(R-f) 

To leading order, the asymptotic lower-branch neutral solution is unchanged from 
the PPF three-zoned form (Lin 1955; Reid 1965; Stuart 1963; Smith 1979) until u, 
rises to O(RJ).  If - u, = Mu,, 

the scaled wavenumber and wavespeed are a, = H a  and c, = Me respectively, and 
in the core flow 

(A 2) 

while in the upper (+) and lower ( - )  wall layers, with Y* = H( 1 Ty), 

(A 3) 
From (A 2), (A 3) and (2.1) the eigenvalue relation is found to be 

(ii,v", @) - (U,, R-4 V,, Rap,), 

(ii,V",jj) - (uk, TRSwk, R-tpk).  

where 

and Ai (5) is the Airy function. Alternatively, (A 4a) can be cast in terms of the 
modified Tietjens function 9 ( z )  (see e.g. Miles 1960): 

where z* = (+.z,~(~,*~,). (A 4e) 

When ii, = 0 (A 4 4  yields the PPF result z+ = z- = z,, where zo is the unique root 
of Im ( 9 ( z ) )  = 0, but our interest, for the sake of 92, is more in the limit a,+ a. 
Three possibilities then exist: (i) z+ and 2- remain O( 1) ; (ii) I zk I -+ a with zT = O( 1)  ; 
and (iii) I z+ I and I z- I + a. Each possibility will be considered in turn. 

In  (i) a, = 9 ( ~ + - ~ ~ ) ~ / 8 2 : , + 0  from (A 4e), and (A 4d) becomes 

Figure 8 plots Re (G) versus z+ (given z-) and z- (given z+) when Im (G) = 0. We deduce 
that z+ > 0, z- < 0 and that there are three roots of G = 0. These are 

(z- ,z+)  % (-5.540,6.135), (-4.803,5.205), (-0.893,2.829), (A 6) 

with (A 4a) then giving 
e, ii;l z 0.0510, 0.0401, 0.5216 

respectively as ii,+ a. The current structure breaks down when ii, becomes O(H) 
(u, = O(l ) ) ,  and therefore matches with $2. The three asymptotic forms for 
R a  4 u, 4 1, 

. -  

c - O.5216uw, 0.051Ouw, 0.0401~,, 

are drawn in figures 3 (a), 4 (a). 
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FIGURE 8. Graph of Re (G(z+, z - ) )  versus z+ and z- for those z+ and z- 
satisfying Im (G(z+, z-)) = 0; - - -, Re (G) = 0. 

Re (c;) 

In (ii) suppose (without loss of generality, because of the symmetry u,+-u,) that 
z+-+ 00 with z- = O(1). Since, from Miles (1960), 

e@ geiin 
F ( 2 )  - 1 + 7 + -  as z-tm, 

22 423 

it  follows that 

z- - z,, c, - u, + (9 z,, 

Now the structure alters when ii, becomes O ( e ) ,  i.e. when u, is O(R*), because 
a viscous critical layer develops within the lower wall layer. The new structure there 
is similar, but not identical, to the PPF upper-branch type (see below). Consideration 
of the regimes a = O(R-B), O(R-h) subsequently achieves a match with the upper 
branch PPF form (see figure 9). 

In (iii), if z+++m and z-+-00, then 

ui - 450u7-,1, 2c0 - ui as ii, -+ 00. (A 11) 

So the structure fails when ii, becomes O(&), i.e. when u, is O(R-h), owing to a 
viscous critical-layer/boundary-layer interaction. Unlike other such solutions of this 
form, there is then no significant pressure variation across the channel. 

Second Regime, u, = O(R-A) 
In  this upper-branch case the dominant scalings are (Smith 1979) 

where now E = R-A. No direct match with the previous forms is possible, but the 
regime u, = O(R-A) turns up again subsequently. The analysis is very similar to 

u = €ao, c = &2C0, u, = &%,, (A 12) 
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FIGURE 9. Schematic graph of wall velocity versus wavenumber for neutral modes. 

Smith (1979), there being seven asymptotic regions. The only significant difference 
is that it  is necessary to consider asymmetric modes. We find the eigenvalue relation 

co = %:, ( c o - i l w ) ~ + ( c o + i l w ) - ~  = f ( 8 a 0 ) 4 n ( c ~ + ~ ) ,  (A 13a,b) 

where co > 1 il, I so that critical layers implicit in the analysis exist. The solution of 
(A 13) is unique, recovering the PPF result for i l ,+O,  while as E,+ 

81 
16n2( 102,);' a: - s,, co N ii, + 

This structure breaks down when a, becomes O ( B ) ,  i.e. when u, is O(R-h), 
because the upper critical layer and boundary layer expand into the surrounding 
'adjustment' zone and merge. The resulting single zone is of similar structure to the 
boundary layers for u, = O(R-)). The following examination of the stage u, = O ( R 3 )  
demonstrates a link between (A 14) and (A 10). 

Third Regime, u, = O(R*) 

The above subsections suggest the distinct scalings 

u, = E ~ G , ,  (a, c )  N e2(a,, il,) +e4(a2,  c2), (A 15) 

where now E = R-A. As before, there exists a core region and, near the lower wall, 
an 'adjustment' region within which a critical layer and a viscous wall layer arise. 
Unusually, the latter's phase lag does not interact with the critical-layer phase jump. 
Further, the wavespeed is close to the upper wall velocity, and so, instead of an upper 
'adjustment ' region, there is an upper boundary layer of the u, = O(R-f) kind. Hence 
this mode is like half of the lower branch and half of the upper branch of the PPF 
form. We find the eigcnvalue relations 

2 5ao 2 - -  - u,, ~ ~ ( 1 + 9 - ~ ( z ) ) - ~ a , a ,  = & ~ ( ~ - i n + l n & a ~ ) ,  (A 16a,b)  
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where z = ($zo)ic2. The imaginary part of (A 16b) yields 

(A 16c) 

From the Tietjens function tabulated in Miles (1960), we deduce that ii, < fiz, where 
ii: corresponds to the maximum of H and is the third cut-off wall velocity referred 
to in the main text. For ii, > fi: there are no neutral modes on this scaling, while 
for U, < iic the upper and lower branches of a neutral curve exist. Further, c2 and 
a2 can be shown to match with (A 10) as z+zo+ and with (A 14) as z++oo. This 
stage therefore links the previous upper-branch and lower-branch forms, as required 
and as shown schematically in figure 9. 

The one remaining part of figure 9 to  consider, near u, = O(R-h), a = O(R*), is 
forced by (A 11) and explains how one of the limits for u, = O ( R 4 )  becomes an upper 
branch for u, = O(1). 

The limit (A 11) suggests the scaling 

Fourth Regime, u, = O(R-i%) 

u, = e4iiw, a - e3a0 + e5al + e7 In ea2a + e7a2, c - e6cl + e8 In ecza + e8c2, (A 17) 

where e = R-A. The core solution proceeds much as before except that, unusually, 
the pressure perturbation is constant across the channel. Again there are ‘adjustment’ 
zones and viscous boundary layers at the walls, with some slight modifications (e.g. 
two terms need to be calculated in the boundary layers). The eigenvalue relations, 
determined by a more complicated interaction than before, are found to be 

These have a unique solution for all ii,, matching with (A 11) as ii ,+O. For large 

From the scaling (A 17), (A 19) breaks down when Uw becomes O(&), i.e. when u, 
is O( 1). For R-h Q u, Q 1, (A 19) yields the asymptote c - (&nu&); plotted (dash4ot) 
in figure 4(a). 

This completes our examination of the neutral modes when 0 < u, -4 1, the results 
being summarized in figure 9. To recapitulate : 

(i) u, = O(R-f),  a = O(R-4). For this scaling the lower-branch PPF form is 
changed significantly. For u, 4 R-) there is only one mode, while for u, % R* there 
are five modes. Three of these modes match directly onto the u, = O( l), a = O(R-’) 
scaling of $2. The other two modes match onto disturbances with scalings 
u, = O(R-h), a = O(R-&) and u, = O(R-h), a = O(R-h). 

(ii) u, = O(R-h), a = O(R-A). The one mode with this scaling matches onto one 
of the u, = O(R-1) modes and one of the u, = O(1) modes. 

(iii) u, = O(R-A), a = O(R-h). For this scaling there are two modes with signifi- 
cantly different structures. One of them can be viewed as the ‘large’ u, limit of a 
u, = O(R-f) mode. The other mode is the ‘continuation’ of the upper-branch PPF 
mode. Both modes match onto disturbances with scalings u, = O(R-A), a = O(R-h). 

(iv) u, = O(R-A),  a = O(R*). There is a third cut-off wall velocity on this scale, 
above which no modes exist. For u, Q R-A the two modes match as discussed above. 
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The structure of these modes is similar to the lower-branch PPF mode adjacent to 
one wall, and the upper branch PPF mode adjacent to the other. 

Finally we note that there is one neutral curve for uwS RJ,  there are three 
neutral curves for R-4 5 u, ;5 R*, and two for R-A 5 u, 4 1. There may also be 
a range of u, of O(R-)) where there are two neutral curves. 
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